
1

Basic Introduction to Classes & Objects
// Example showing use of class and objects

#include <iostream>

using namespace std; // explained in next slide

#define SIZE 100

// This creates the class stack.

class stack {

int stck[SIZE]; // default scope is private

int tos;

public: // scope : discussed later

void init(); // Function declaration

void push(int i);

int pop();

}; // we can declare an object here also but then it

// will be a global object

void stack::init() // function defination

{

tos = 0;

}

void stack::push(int i)

{

if(tos==SIZE) {

cout << "Stack is full.\n";

return;

}

stck[tos] = i;

tos++;

}

int stack::pop()

{

if(tos==0) {

cout << "Stack underflow.\n";

return 0;

}

tos--;

return stck[tos];

}

int main()

{

stack stack1, stack2; // create two stack objects

stack1.init(); // we access the class members

// with the help of . operator

stack2.init();

stack1.push(1);

stack2.push(2);

stack1.push(3);

stack2.push(4);

cout << stack1.pop() << " ";

cout << stack1.pop() << " ";

cout << stack2.pop() << " ";

cout << stack2.pop() << "\n";

return 0;

}

Prepared by Dr. Naveen Choudhary

2Prepared by Dr. Naveen Choudhary

3Defined in iostreamPrepared by Dr. Naveen Choudhary

4Prepared by Dr. Naveen Choudhary

5Prepared by Dr. Naveen Choudhary

6Prepared by Dr. Naveen Choudhary

7Prepared by Dr. Naveen Choudhary

8Prepared by Dr. Naveen Choudhary

9Prepared by Dr. Naveen Choudhary

10

Constructors & Destructors
 How to initialize data members (specially private members) of an object  use

constructors

 A constructor is a special function that is a member of a class and has the same name
as that of the class

 Constructor do not return values & so constructor function has no return type

 How constructor is called :: called when the object is declared. An object’s
constructor is called once for global or static local objects. For non static local
objects, the constructor is called each time the object declaration is encountered.

 DESTRUCTORS

 Syntax :: ~Class_name

 Purpose : In many circumstances an object will need to perform some actions when it
is destroyed.

 An object may need to de-allocate memory that it had previously allocated or it may
need to close a file that it had opened. So in C++, it is destructor’s function that
handles deactivation events.

 when destructor is called :: when an object is destroyed, it’s destructor is
automatically called.

 when an object is destroyed :: local objects are created when their block is
entered & destroyed when the block is left

 Global objects are destroyed when program terminates

 like constructor, destructors also do not have return values

Prepared by Dr. Naveen Choudhary

11

Example constructor & destructor

// Using a constructor and destructor.

#include <iostream>

using namespace std;

#define SIZE 100

// This creates the class stack.

class stack {

int stck[SIZE];

int tos;

public:

stack(); // constructor declared

~stack(); // destructor declared

void push(int i);

int pop();

};

// stack’s constructor function

stack::stack() // no return value

{

tos = 0;

cout << "Stack Initialized\n";

}

// stack’s destructor function

stack::~stack() // no return value

{

cout << "Stack Destroyed\n";

}

void stack::push(int i)

{

if(tos==SIZE) {

cout << "Stack is full.\n";

return;

}

stck[tos] = i;

tos++;

}

int main()

{

stack a, b; // create two stack objects

a.push(1);

b.push(2);

a.push(3);

b.push(4);

cout << a.pop() << " ";

cout << a.pop() << " ";

cout << b.pop() << " ";

cout << b.pop() << "\n";

return 0;

}

int stack::pop()

{

if(tos==0) {

cout << "Stack underflow.\n";

return 0;

}

tos--;

return stck[tos];

}

output :

stack initialized

stack initialized

3 1 4 2

stack destroyed

stack destroyed

Prepared by Dr. Naveen Choudhary

12

Classes & Objects

Prepared by Dr. Naveen Choudhary

13

Classes
 Class is a logical abstraction whereas Object

has physical existence

 Object is an instance of a class
Class class_name {

Data members & member functions // by default private

int a;

int b;

access_specifier :

/ * public, private or protected, once an access specifier has been used, it

remains in effect until either another access specifier is encountered or

the end of the class declaration is reached data members & member

functions */

.

. .

.

access_specifier :

data members & member functions

.

. .

.

} object_list ; Access Specifiers :
 private :: private to class only

 Public:: access specifier allows functions or data to be

accessible to other parts of your program.

 protected :: will be discussed later

There are few restriction that apply to

data members
a non static member variable cannot have an

initializer

Class ABC {

int A = 2; // not allowed

}

 No member can be object of the class that is

being declared. Although a member can be a

pointer to the class that is being declared.

Class ABC {

ABC BOX; //not allowed

ABC *next_box; // allowed

}

 No member can be declared as auto, extern or

register (but can be static)

Prepared by Dr. Naveen Choudhary

14

Structures & Classes
 Structure in C++ can have member functions

 Only difference b/w structure & Classes is that data members are

public by default in structure. Whereas in class, data members are

private by default.

 C-like structure (without member functions) are generally referred as

POD (plain old data)

 General rule is to use classes where necessary & use structure only in

the POD style.

struct mystr {

int a; // public by default

int b;

void showa();

void showb(char *s);

};

void mystr :: showa() {

.

.

}

Prepared by Dr. Naveen Choudhary

15

Union & Classes
 Like in C, the C++ union data members share the same location in memory

 like structure, union members are public by default

 like in C++ structure, Union can have their own constructors or destructors

#include <iostream>

using namespace std;

union swap_byte {

void swap();

void set_byte(unsigned short i);

void show_word();

unsigned short u;

unsigned char c[2];

};

void swap_byte::swap()

{

unsigned char t;

t = c[0];

c[0] = c[1];

c[1] = t;

}

void swap_byte::show_word()

{

cout << u;

}

void swap_byte::set_byte(unsigned short i)

{

u = i;

}

int main()

{

swap_byte b;

b.set_byte(49034);

b.swap();

b.show_word();

return 0;

}

note : what is POD union : : C like union without the

member functions

Restriction in C++ on Unions

 union cannot inherit any other class

 Union can not be a base class

Union can not have virtual functions

Union can not have static member variables

Union can not use a reference member variables

 A union cannot have as a member any object that

overloads the = operator.

 no object can be a member of a union if the object

has an explicit constructor or destructor.

Note : In c we need to declare a variable of union

as

union swap_byte b;

But in C++ we need not use union keyword. Same

is the case with structures, enum & classes

Prepared by Dr. Naveen Choudhary

16

Anonymous Union
 It is a special type of Union

 Anonymous Union does not include a type name and thus no objects
of the anonymous Union can be declared

 The variables of Anonymous Union can be directly referred with out
the normal dot operator.

 The scope of Anonymous Union Variable will be same as other local
variables and thus anonymous Union variable name should not
collide/conflict with the local variable names

#include <iostream>

#include <cstring>

using namespace std;

int main()

{

// define anonymous union

union {

long l;

double d;

char s[4];

} ;

// now, reference union elements directly

l = 100000;

cout << l << " ";

d = 123.2342;

cout << d << " ";

strcpy(s, "hi");

cout << s;

return 0;

}

RESTRICTIONS ON ANONYMOUS

UNIONS

 All restriction involving unions

apply to anonymous Unions also

no member function allowed

Anonymous Unions can not

contain private or protected

elements

Global Anonymous unions must

be specified as static

Prepared by Dr. Naveen Choudhary

17

Friend Function

 A friend function has access to all private and protected members of
the class for which it is a friend

 USE OF FRIEND FUNCTION

 Useful for overloading certain types of operators

 Friend functions make the creation of some types of I/O function easier.

 Friend function may also be desirable where two or more classes may
contain members that are interrelated relative to other parts of the
program.

class B{

int b1,b2,b3;

public:

void func (int a1, int a2);

friend int funcglobal (int x1);

}

void B::func (int a1, int a2){

}

int funcglobal(int x1){

B ob;

ob.b1 = x1; // here you can access the private(or protected) members of B, like b1,b2,b3

ob.b2 = x1; }

Prepared by Dr. Naveen Choudhary

18

Example Friend Function
#include <iostream>

using namespace std;

const int IDLE = 0;

const int INUSE = 1;

class C2;

/* forward declaration (required here since a class

can’t be referred to until it has been declared) */

class C1 {

int status; // IDLE if off, INUSE if on screen

// ...

public:

void set_status(int state);

friend int idle(C1 a, C2 b);

/* or friend int C2 :: idle(C1 a)  if idle happened

to be defined in class C2 */

};

class C2 {

int status; // IDLE if off, INUSE if on screen

// ...

public:

void set_status(int state);

friend int idle(C1 a, C2 b);

};

void C1::set_status(int state)

{

status = state;

}

void C2::set_status(int state)

{

status = state;

}

int idle(C1 a, C2 b)

{

if(a.status || b.status) return 0;

else return 1;

}

int main()

{

C1 x;

C2 y;

x.set_status(IDLE);

y.set_status(IDLE);

if(idle(x, y)) cout << "Screen can be used.\n";

else cout << "In use.\n";

x.set_status(INUSE);

if(idle(x, y)) cout << "Screen can be used.\n";

else cout << "In use.\n";

return 0;

}

Share data (especially)

through friend finction

Ie int idle() in this case

C1

C2

C1 & C2 are unrelated classes

Prepared by Dr. Naveen Choudhary

19

Friend Classes
 One class can be friend of another class. When this is the case,

the friend class and all of its member function have access to

the private members defined within the class.

 Note: It is critical to understand that when one class is a friend of

another, it only has access to names defined within the other class. It

does not inherit the other class. Specifically, the members of the first

class do not become members of the friend class

Class C1 {

int a, b;

public:

friend class min;

};

class min {

func1(); // all these can access the private members of C1

func2(); // ---------do----------------------------

func3(); // -----------do------------------------

}

Prepared by Dr. Naveen Choudhary

20

Inline Function
 Normal function call  push arguments in stack, save various registers,

transfer control and do vice versa on return  so more time consuming
process

 Inline function  code is expanded inline so efficient (faster) but will result in
larger code size  so generally very small functions are inlined.

 Note :: inline is actually is just a request, not a command to the compiler. The
compiler can choose to ignore it. It is common for a compiler not to inline a
recursive function. If a function cannot be inlined, it will simply be called as a
normal function

#include <iostream>

using namespace std;

inline int max(int a, int b)

{

return a>b ? a : b;

}

int main()

{

cout << max(10, 20); // == cout << (10>20 ? 10 : 20)

cout << " " << max(99, 88); // == cout << " " << (99>88 ? 99 : 88)

return 0;

}

// note  inline function may be class member

//functions

Class myclass {

_

_

public :

void xyz()

int show ()

}

inline void myclass :: xyz() {

_

_

}

inline int myclass :: show()

{

_

_

_

}

note : when a function is defined inside a class declaration it is automatically made into an inline

function (if possible). It is not necessary (but not an error) to precede its declaration with the inline

keyword

class myclass {

-

-

void xyz(int i, int j) { a = i ; b = j; } // automatic inline as defined within the class

void show () { cout << a << “ “ << b << “\n” // automatic inline as defined within the class

};
Prepared by Dr. Naveen Choudhary

21

Constructors - inlined
 constructors and destructors functions may also be inlined, (by default), If

defined within their class or explicitly

Parameterized constructors

Class myclass {

_

_

_

int a, b;

public :

myclass(int i, int j) {a = i ; b = j ; } // this will be inline

};

Constructor with one parameter

Class myclass {

int a ;

-

-

-

public :

myclass(int i) { a = i; } // this is inline

}

call to constructor ::

myclass ob(3,4);  this is generally used

or

myclass ob = myclass(3,4);

call to constructor with single argument

myclass ob = 99 actually for compiler it is equivalent to

myclass ob = myclass(99);

we can also use  myclass ob(99); //generally this is used

myclass ob = 99  is possible b/s whenever you create a

constructor that takes one argument, you are also

implicitly creating a conversion from the type of that

argument to the type of the class.

Prepared by Dr. Naveen Choudhary

22

Static Data Members
Class shared {

Static int a ; // only a declaration so no space is

//allocated as such

-

-

};

int shared :: a; // definition, so now space is allocated

/* note : static means you are telling the compiler that only

one copy of that variable will exist & that all objects of the class

will share that variable. All static variables (by default) are

initialized to 0 before the first object is created.*/

int main()

{

shared :: a = 99 // we have not created any object, still

// we can use static variable a

count << shared :: a ; // prints 99

shared x;

count << x.a; // prints 99, use of static variable a

//with object

return 0;

}

//one use of static variable is to provide access

//control to some shared resource used by all

//objects of a class

#include <iostream>

using namespace std;

class cl {

static int resource;

public:

int get_resource();

void free_resource() {resource = 0;}

};

int cl::resource; // define resource

int cl::get_resource()

{

if(resource) return 0; // resource already in use

else {

resource = 1;

return 1; // resource allocated to this object

}

}

int main()

{

cl ob1, ob2;

if(ob1.get_resource()) cout << "ob1 has

resource\n";

if(!ob2.get_resource()) cout << "ob2 denied

resource\n";

ob1.free_resource(); // let someone else use it

if(ob2.get_resource())

cout << "ob2 can now use resource\n";

return 0;

}

/* Another use of static member variable is to keep track

of the no. of objects of a particular class type that are in

existence */

listing 26//static

#include <iostream>

using namespace std;

class Counter {

public:

static int count;

Counter() { count++; }

~Counter() { count--; }

};

int Counter::count;

void f();

int main(void)

{

Counter o1;

cout << "Objects in existence: ";

cout << Counter::count << "\n";

Counter o2;

cout << "Objects in existence: ";

cout << Counter::count << "\n";

f();

cout << "Objects in existence: ";

cout << Counter::count << "\n";

return 0;

}

void f()

{

Counter temp;

cout << "Objects in existence: ";

cout << Counter::count << "\n";

// temp is destroyed when f() returns

}

Prepared by Dr. Naveen Choudhary

23

Static Member function
 Static member function can be called with class name or with object name

#include <iostream>

using namespace std;

class cl {

static int resource;

public:

static int get_resource();

void free_resource() { resource = 0; }

};

int cl::resource; // define resource

int cl::get_resource()

{

if(resource) return 0; // resource already in use

else {

resource = 1;

return 1; // resource allocated to this object

}

}

int main()

{

cl ob1, ob2;

/* get_resource() is static so may be called independent

of any object. */

if(cl::get_resource()) cout << "ob1 has resource\n";

if(!cl::get_resource()) cout << "ob2 denied resource\n";

ob1.free_resource();

/* we can also call static member function getr_resource

using object syntax also */

if(ob2.get_resource())

cout << "ob2 can now use resource\n";

return 0;

}

Restrictions on static member functions

They can only directly refer to other static

member of the class (but they can use non static

global functions and data)

A static member function can not use this

pointer

There cannot be a static and non static versions

of the same function

A static member function may not be virtual

Static member functions cannot be declared as

constant or volatile

/* Static member functions have limited application,

but one good use of them is to “preinitialize” private

static data before any object is actually created. */
#include <iostream>

using namespace std;

class static_type {

static int i;

public:

static void init(int x) { i = x; }

void show() { cout << i; }

};

int static_type::i; // define i

int main()

{

// init static data before object creation

static_type::init(100);

static_type x;

x.show(); // displays 100

return 0;

}
Prepared by Dr. Naveen Choudhary

24

WHEN CONSTRUCTORS AND DESTRUCTORS

ARE EXECUTED
 A local object constructor function is executed when the objects declaration statement

is encountered. Objects destructor is called when the life time of the object is about to
end.

 Global objects have their constructor function execute before main() begins execution.
Global constructors are executed in order of their declaration, within the same file. You
cannot know the order of execution of global constructors spread among several files.
Global destructors execute in reverse order after main() has terminated

#include <iostream>

using namespace std;

class myclass {

public:

int who;

myclass(int id);

~myclass();

} glob_ob1(1), glob_ob2(2);

myclass::myclass(int id)

{

cout << "Initializing " << id << "\n";

who = id;

}

myclass::~myclass()

{

cout << "Destructing " << who << "\n";

}

int main()

{

myclass local_ob1(3);

cout << "This will not be first line displayed.\n";

myclass local_ob2(4);

return 0;

}

o/p :

Initializing 1

Initializing 2

Initializing 3

This will not be the first line displayed

Initializing 4

Destructing 4

Destructing 3

Destructing 2

Destructing 1

Prepared by Dr. Naveen Choudhary

25

THE SCOPE RESOLUTION OPERATOR ::

int i; // global i

void f()

{

int i; // local i

::i = 10; // now refers to global i

.

.

.

}

Prepared by Dr. Naveen Choudhary

26

Local Classes

#include <iostream.h>

using namespace std;

void f();

int main() {

f();

return 0;

}

void f() {

class myclass

{

int i;

public:

void put_i (int x) {

i = x;

}

int get_i (){

return i;

}

}ob;

ob.put_i (10);

cout<<ob.get_i();

}

Restriction on local classes
 Member functions must be defined

within the class declaration in local classes

(i.e. they are inline)

The local class may not use or access

local variables of the function in which it is

declared but can use the static local

variable of the function.

Local class may access type names &

enumerators defined by the enclosing

function.

No static variable may be declared inside

a local class.

Because of these problems local classes

are not common in C++

Prepared by Dr. Naveen Choudhary

27

Passing Objects to functions
 Objects are passed by value

 So new object needs to be created

when passing objects as parameter

 So whether constructor is called 

no rather it will be a bitwise copy {

if constructor is called then it is as

good as creating a new object but we

want to actually pass the old object 

so no constructor should be called

 Although destructor for the object

(parameter) will be called when the

function ends  necessary  as

separate memory is occupied by the

parameter object (object’s copy) & it

need to be freed

 Bit wise copy : Exact bit by bit copy

but will lead to problem of side

effect in case like  if an object used

as an argument allocates memory &

frees that memory when it is

destroyed, then its local copy

(parameter object) inside the function

will free the same memory when its

destructor is called & this will leave the

original object damaged & effectively

useless  what is the solution  use copy

constructor (to be discussed later)

// Passing an object to a function.

#include <iostream>

using namespace std;

class myclass {

int i;

public:

myclass(int n);

~myclass();

void set_i(int n) { i=n; }

int get_i() { return i; }

};

myclass::myclass(int n)

{

i = n;

cout << "Constructing " << i << "\n";

}

myclass::~myclass()

{

cout << "Destroying " << i << "\n";

}

void f(myclass ob);

int main()

{

myclass o(1);

f(o);

cout << "This is i in main: ";

cout << o.get_i() << "\n";

return 0;

}

void f(myclass ob)

{

ob.set_i(2);

cout << "This is local i: " << ob.get_i();

cout << "\n";

}
Prepared by Dr. Naveen Choudhary

28

RETURNING OBJECTS

 When an object is returned by a

function (object local to function), a

temporary object is automatically

created that holds the return value

 It is this object that is actually

returned by the function.

 After the value has been returned,

this object is destroyed.

 The destructor of temporary object

may cause side effects

Side effects like  if the object

returned by the function has a

destructor that free dynamically

allocated memory, that memory will

be freed even though the object that

is receiving the return value is still

using it.

soln: overloading the assignment operator

using copy constructor

// Returning objects from a function.

#include <iostream>

using namespace std;

class myclass {

int i;

public:

void set_i(int n) { i=n; }

int get_i() { return i; }

};

myclass f(); // return object of type myclass

int main()

{

myclass o;

o = f();

cout << o.get_i() << "\n";

return 0;

}

myclass f()

{

myclass x;

x.set_i(1);

return x;

}

Prepared by Dr. Naveen Choudhary

29

Object Assignment
// Assigning objects.

#include <iostream>

using namespace std;

class myclass {

int i;

public:

void set_i(int n) { i=n; }

int get_i() { return i; }

};

int main()

{

myclass ob1, ob2;

ob1.set_i(99);

ob2 = ob1; // assign data from ob1 to ob2 (bitwise copy)

cout << "This is ob2's i: " << ob2.get_i();

return 0;

}

Note : We can avoid bit – by – bit copy by overloading the assignment

operator & define some other assignment procedure

ptr

(5000)

ptr

(2000)

01 02

o1=o2 // o1.ptr =2000

Prepared by Dr. Naveen Choudhary

30

Const member functions & constant object

Const function arguments

If we want that argument passed by

reference should not be changed then we

should define these argument in function

declaration & definition as const.

void func (int &a, const int &b); //declaration

void func (int &a, const int &b)

{

//definition

}

No problem in passing a const argument by

value, because the function can’t modify the

original value anyway.

Const member function : member function that guarantees

that it will never modify any of its class member data

void constfunc () const //the const will come in both member

//function declaration & definition

distance add_dist(const distance &d2) const //***

{

distance temp;

feet = 0; //error as feet is class data member of invoking

//object

d2.feet = 0; //error, as d2 is passed as constant

temp.feet = temp.feet + d2.feet; // allowed

return temp;

}

*** if you want that the argument passed by reference to

this function should not be modified then it should be

declared as const reference argument in the member

function.

Prepared by Dr. Naveen Choudhary

31

constant objects

 when an object is declared as const then you can’t modify it. It also means that you can

only use those member function with this object which are declared as const as they are

the only one that guarantees not to modify it.

Class Distance {

.

.

Public :

Distance(…, …) { ……. }

Void getlist() { …. }

Void showdist() const

{ }

};

int main(){

const Distance ft(300, 0)

// ft.getlist();  not allowed

ft.showdist(); // allowed

}

Prepared by Dr. Naveen Choudhary

32

Containership & Nested Classes

Containership ::

A class has an object of

different class as its data member

Class A{

-

-

};

class B{

A obA; // define obA as an object of

//class A

};

member function of B can access the

public members of A with the help of dot

(.) operator.

Nested Class ::

it is possible to define one

class within another class.

class A {

class B // Nested

//class

{

}

}

A nested class is only valid

within the scope of the enclosing

class.

Nested classes are rarely used &

are not generally required.

Prepared by Dr. Naveen Choudhary

33

Arrays, Pointers, References &

Dynamic Memory Allocation

Prepared by Dr. Naveen Choudhary

34

Array of Objects
// In case of classes with no constructor function

Class C1 {

.

.

};

int main()

{

C1 ob[3]; // array of 3 objects

.

.

}

//In case of class with constructor of single argument

Class C1 {

int i;

public :

C1(int j) { i = j; }

.

.

};

int main()

{

C1 ob[3] = { 1, 2, 3 };

// the above statement is equivalent to C1 ob[3] = { C1(1), C1(2), C1(3) }

// and C1 ob[3];  will be an error here because we don’t have a zero

// argument constructor

.

.

}

//In case of constructor with two arguments and no constructor

//with single argument

Class C1 {

int h;

int i;

public :

C1(int j, int k) { h = j; i=k; }

};

int main() {

C1 ob[3] = { C1(1, 2), C1(3, 4), C1(5, 6) };

C1 ob[3] // invalid  can’t have uninitialized array here

}

//Creating initialized & uninitialized array

//  if we want to create uninitialized array along with

//initialized array then along with other constructor, we

//have to explicitly create a parameter less constructor

//also.

Class C1 {

int i;

public :

C1() {i = 0;}// parameter less constructor

C1(int j) { i = j;}

};

int main() {

C1 a1[3] = {3, 5, 6 }; // initialized array  valid statement

C1 a2[4]; // un initialized array  valid statement

}

Prepared by Dr. Naveen Choudhary

35

Pointers to objects
 When accessing members of a class, given a pointer to an object, use the

arrow () operator instead of the dot operator.

class C1 {

int i;

public:

C1 (int j) { i=j; }

int get_i() { return i; }

};

int main() {

C1 ob(88), *p;

p = &ob;

cout << pget_i();

return 0;

}

OR

int main() {

C1 ob[3] = {1,2,3};

C1 *p;

int i;

p = ob; // get start of array

for (i=0; i<3;i++) {

cout << pget_i() << "\n";

p++; //point to the next element of array

// in this case p++ then the pointer points to the next

//object in the array

}

return 0;

}

//we can assign the address of a public member of an

//object to a pointer and then access that member by using

//the pointer

#include <iostream>

using namespace std;

class cl {

public:

int i;

cl(int j) { i=j; }

};

int main() {

cl ob(1);

int *p;

p = &ob.i; // get address of ob.i

cout << *p; // access ob.i via p

return 0;

}

//Type checking C++ pointer

//you may assign one pointer to another only if the two pointer

// types are compatible

int *pi;

float *pf;

pi = pf; //error - type mismatch

// Note:- Of course, you can override any type in compatibilities using a cast

pi = (int *) pf; //Ok
Prepared by Dr. Naveen Choudhary

36

this pointer
 When a member function is called, it is automatically passed an implicit

argument that is pointer to the invoking object (that is, the object on which the

function is called)

Class C1{

int i;

public:

get_i() {

return this.->i; // if we say return i then also it

means

//the same

}

};

int main() {

C1 ob1;

cout<<ob1.get_i();

}

class alpha {

int data;

public:

alpha &operator = (alpha &a) {

data=a.data

return *this;

}

};

int main() {

alpha a1(37);

alpha a2,a3;

a3 = a2 = a1; // cascading of = was possible b/s

//this pointer was returned

}

Usefulness of this

 any member function can find

out the address of the object

of which it is a member

this is actually useful when

operators are overloaded and

whenever a member function

must utilize a pointer to the

object that invoked it

Note:- friend function are not

member of a class and

therefore are not passed a this

pointer

Note: static member function

do not have a this pointer

Prepared by Dr. Naveen Choudhary

37

Pointers to a derived type
 let B is base class & D be the derived class

 A pointer of type B* (ie say B*ptr) may also point to an object of the type D

 A pointer of type *D (ie say D *ptr1) may not be able to point to an object of type
B

 Although we can use a base pointer to point to a derived object, we can access
only the members of the derived type that were imported/inherited from the
base. that is, we won't be able to access any members added by the derived
class {although we can cast a base pointer into derived pointer & gain full
access to the entire derived class}

class base {

int i;

public:

void set_i(int num) { i=num; }

int get_i() { return i; }

};

class derived: public base {

int j;

public:

void set_j(int num) { j=num; }

int get_j() { return j; }

};

int main() {

base *bp;

derived d;

bp = &d; // base pointer points to derived object

// access derived object using base pointer

bp->set_i(10);

cout << bp->get_i() << " ";

/* The following won't work. You can't access element of a

derived class using a base class pointer. */

bp->set_j(88); // error --- ((derived *)bp)->set_j(88);//ok

cout << bp->get_j(); //error--cout << ((derived *)bp) >get_j();//ok

return 0;

}

Prepared by Dr. Naveen Choudhary

38

Pointers to a derived type
 It is important to remember that pointer arithmetic is relative to the base type of

the pointer. for this reason, when a base pointer is pointing to a derived object,

incrementing the pointer does not cause it to point to the next object of the

derived type. instead it will point to what it thinks is the next object of the base

type.

// This program contains an error.

#include <iostream>

using namespace std;

class base {

int i;

public:

void set_i(int num) { i=num; }

int get_i() { return i; }

};

class derived: public base {

int j;

public:

void set_j(int num) {j=num;}

int get_j() {return j;}

};

int main()

{

base *bp;

derived d[2];

bp = d;

d[0].set_i(1);

d[1].set_i(2);

cout << bp->get_i() << " ";

bp++; // relative to base, not derived

cout << bp->get_i(); // garbage value displayed

return 0;

}

The use of base pointer to

derived type is most useful when

creating run-time polymorphism

(through the mechanism of virtual

functions)

Prepared by Dr. Naveen Choudhary

39

References
 it is basically an implicit pointer or in other words it is an alias (different

name) for a variable

 Independent references

 An independent reference must be initialized when they are created (you

need something to point to)

#include <iostream>

using namespace std;

int main() {

int a;

int &ref = a;

/* independent reference must be initialized at the time of declaration */

a = 10;

cout << a << " " << ref << "\n";

/* a & ref both refer to the same value a=10, ref=10 */

ref = 100;

cout << a << " " << ref << "\n"; // a=100, ref=100

int b = 19;

ref = b; // this puts b's value into a

cout << a << " " << ref << "\n"; // a=19, ref = 19

ref--; // this decrements a it does not affect what ref refers to

cout << a << " " << ref << "\n"; // a=18,ref=18

return 0;

}

int n[10];

int &x = n[10]; // x is alias for n[10]

char &a = '\n'; // initialised reference

//to a literal

int x;

int *p = &x;

int &m = *p; // so new m refers to x

//(which is pointed to by

// pointer P)

int &n = 50;

// creates a int object with value 50

//and name n

int i=4;

int &j; //error

Int &j=4;//ok

J=i;

Prepared by Dr. Naveen Choudhary

40

Reference
// Manually create a call-by-reference using a pointer.

#include <iostream>

using namespace std;

void neg(int *i);

int main() {

int x;

x = 10;

cout << x << " negated is ";

neg(&x);

cout << x << "\n";

return 0;

}

void neg(int *i)

{

*i = -*i;

}

// Call by reference using reference variable

// Use a reference parameter.

#include <iostream>

using namespace std;

void neg(int &i); // i now a reference

int main()

{

int x;

x = 10;

cout << x << " negated is ";

neg(x); // no longer need the & operator

cout << x << "\n";

return 0;

}

void neg(int &i)// at the time of call  int &i = x

{

i = -i; // i is now a reference, don't need *

}

#include <iostream>

using namespace std;

void swap(int &i, int &j);

int main()

{

int a, b, c, d;

a = 1;

b = 2;

c = 3;

d = 4;

cout << "a and b: " << a << " " << b << "\n";

swap(a, b); // no & operator needed

cout << "a and b: " << a << " " << b << "\n";

cout << "c and d: " << c << " " << d << "\n";

swap(c, d);

cout << "c and d: " << c << " " << d << "\n";

return 0;

}

void swap(int &i, int &j)

{

int t;

t = i; // no * operator needed

i = j;

j = t;

}

Prepared by Dr. Naveen Choudhary

41

Reference
 Passing reference to object

 when we pass an object by reference, no bit-wise copy of the object is

made. this means that no object used as a parameter is destroyed when

the function terminates, and so the parameter’s destructor is not called.

#include <iostream>

using namespace std;

class cl {

int id;

public:

int i;

cl(int i);

~cl();

void neg(cl &o) { o.i = -o.i; }

// no temporary object is created

};

cl::cl(int num) {

cout << "Constructing " << num << "\n";

id = num;

}

cl::~cl() {

cout << "Destructing " << id << "\n";

}

int main() {

cl o(1);

o.i = 10;

o.neg(o);

cout << o.i << "\n";

return 0;

}

Output:- constructing 1

-10

destruction 1
note:- destructor is called only once

ie when main() terminates

 Passing object by reference is faster

than passing object by value. as there

is no need of making any copy &

putting on to the stack

Prepared by Dr. Naveen Choudhary

42

Reference

Function returning reference can be used on the left side (as well as on right side) of an

assignment statement. In other words when a function returns a reference, the function

call can exist in any context where a reference can exist

//the program replaces hello there with helloxthere

#include <iostream>

using namespace std;

char &replace(int i); // return a reference

char s[80] = "Hello There";

int main()

{

replace(5) = 'X'; // assign X to space after Hello

cout << s;

return 0;

}

char &replace(int i)

{

return s[i];

}

Note :: One thing to be careful about when returning

reference is that the object being referenced to

should not go out of scope after the function

terminates. That is do not try to return local variable

by reference

 Reference is an implicit constant

pointer ie once a reference variable

has been defined to refer to a

particular variable, it can not refer to

any other variable. that is, once the

variable and the reference are linked

they are tied together inseparably.

 We can create reference to a

pointer

char *p = “Hello”;

char * &q = p;

 A variable can have multiple

reference. changing the value of one

of them effects a change in all

others.

Prepared by Dr. Naveen Choudhary

43

Restriction on Reference

 You can't reference another reference (ie you can't

obtain the address of a reference)

 You can not create array of references

 You can not create a pointer to a reference

 You can not reference a bit- field

 You can not have a null reference

 A reference variable must be initialized when it is

declared unless it is a member of a class, a function

parameter or a return value.

Prepared by Dr. Naveen Choudhary

44

References --- Q & A
 Q 1. When should we make a call by reference?

 Hint:- A call by pointer or a call by reference is useful in two situations:

 When we intend to change the values of actual arguments through the called function.

 When we want to save memory by preventing the creation of large structure variable that are
being passed to the function

To achieve these purpose reference offer a cleaner and more elegant way as compared to pointers, as
with references, we are not required to use the *and  operators.

 Q 2. Is reference a pointer?
 Hint:- A reference is a const pointer . hence once initialized a reference cannot be made to refer

to another variable. Unlike a pointer a reference gets automatically de-referenced.

 Q3. Is reference to a reference like shown below allowed?
int i;

int &j = i;

int &k = j; // reference to a reference.
 Hint : no, because when we try to assign a reference to a reference the new reference starts

referring to the same variable the first reference is referring to

 Q 4. Can we create a pointer to a reference?
 Hint:- No. This can be explained with the help of following code:

int i;

int &p = i;

int *j = &p; // not a pointer to a reference
 Here it seems that j is a pointer to the reference p, but actually it is pointing to the variable i. this

is because a reference is automatically de-referenced, i.e., &p internally becomes &*p. Thus in j
what gets stored is address of i.

Prepared by Dr. Naveen Choudhary

45

References --- Q & A

 Q 5. How would the compiler interpret the
following statements?

int i = 9;

int &p = i;

int &q = p;
 Hint:- The compiler would interpret statement as shown

below.

int i = 9;

int *const p = &i; // address of 9

int *const q = &*p; // address of 9
 As a reference is nothing but a const pointer the address

of the variable gets stored in a reference. Hence in the
second statement address of i gets stored in const
pointer p. And as reference are automatically de-
referenced p becomes &*p in the third statement.

Prepared by Dr. Naveen Choudhary

46

References --- Q & A
 Q 7 What are the advantages of pointer over reference?

 Hint:- Reference being a const pointer cannot be reassigned. On the other hand pointers can be reassigned. This is
shown in the following example:

main () {

int i,j;

int *p = &i;

p = &j;

}

 Also, arithmetic operation cannot be performed on a reference.This is shown in the following example:

main () {

int i;

int &r = i;

r++; // will not increment r but will increment the value of i

int *p = &i;

p++;

}
 Here r++ would not increment the value of r. But it will increment value of i. This means that when an arithmetic

operation is performed on a reference, it gets performed on a referent. But when p++ is done, the value of p is
incremented.

 Q 8 . Why should we not return a reference or an address of a local variable.
 Hint:- When we return a reference of a local variable, the variable would die once control returns to the calling

function. Hence, calling function would be referencing to a variable that no longer exists.

 Q 9. Can we create a reference to an array?
 Hint:- Yes, a reference to an array is allowed. For example:

int a[] = {3,7,6,9,5};

int(&p)[5] = a; // reference to an array

 Q 10 Why is it so that when we print the address of a reference the address of a referent gets printed?

int i;

int &r = i;

cout << &r;

When we write &r it is actually treated as &*r which is
nothing but address of the values stored in r, that is address
of i.

Note: int (*pt)[7] :: pointer to an array of

7 integers

int *pt[7] ; Array of 7 pointers

Prepared by Dr. Naveen Choudhary

47

References --- Q & A
 State whether the following statements are True or False:

 It is possible to create an array of reference.

 ANS: False, A reference is not an object. Hence we cannot find address of a reference, nor can
we create an array of references. And for the same reason we can not have pointer to the
reference also.

 Once a reference is tied with a variable it cannot be tied with another variable

 ANS: True. A reference being a const pointer, once initialized its value cannot be changed.

 A variable can be tied with several references.

 ANS: True. This is because there is no limitation on storing the address of a variable in multiple
pointers. Since references are const pointer this works. For example:

int a = 10;

int &b = a;

int &c = a;

 In c++ a function call can occur even on the left-hand side of an assignment operator.

 ANS: True. If a function returns a reference its call can exist on the left-hand side of an
assignment operator. This is shown in the following code:

include <iostream.h>

int i;

void main() {

int &fun();

fun() = 10;

}

Here, the function fun() returns a reference to a integer variable i. the
returned reference replace the functions calls. Hence the statement becomes (reference
of i) = 10. hence i would be assigned a value 10, as can be verified by output of cout.

 It is unsafe to return a local variable by reference.

 ANS: True. As soon as the function returns, local variables die. If a reference (or address)of a
local variable is returned, it means we would be referring to the dead variable.

int &fun() {

i = 2;

return i;

}

Prepared by Dr. Naveen Choudhary

48

Dynamic memory allocation in C

main()

{

double x=100, y;

int *p, *p1;

p =&x;

p1=p;

printf(“%d”, x);100

printf(“%d”, *p); 100

printf(“%d”, *p1); 100

printf(“%u”, p); 1009

printf(“%u”, p1); 1009

}

1009(p)

1009(p1)

100 (x)

1000

1003

1009

Pointer arithmetic

We can add or subtract integer to or from pointers (p1 = p1 + 3)

We can subtract same type of pointer from another same type of pointer (to find the

no. of elements separating the two pointers in the array)

 Pointers can be compared (<, <=, >, >=, ==, !=)

Pointes can not be multiplied or divided (p1/3, p*3, p1/p2, p1*p2  all these are

illegal operations on the pointer)

Can not add two pointers (p1 + p2 illegal)

We can not add or subtract type float or double to or from pointers (p + 2.14, p -

2.14 illegal)

Prepared by Dr. Naveen Choudhary

49

Dynamic memory allocation in C

Address Array elements

(&num[0]) 1000 24 (num[0])

(&num[1])  1004 34 (num[1])

(&num[2]) 1008 12 (num[2])

(&num[3]) 1012 44 (num[3])

(&num[4]) 1016 56 (num[4])

(&num[5]) 1020 77 (num[5])

Arrays & Pointers

Name of the array is actually the address of the first

element of the array

int num[] = { 24, 34, 12, 44, 56, 77 };

//num == &num[0] == 1000

num[i] ==*(num + i) == *(i + num) == i[num]

2 –D Array

main() {

int num[3][2];

int i,j;

for(i=0; i <= 2; i++)

{

for(j =0; j <= 1; j++)

{

scanf(“%d”, &num[i][j]);

}

}

}

Address Array elements

(&num[0][0]) 1000 24 (num[0][0])

(&num[0][1])  1004 34 (num[0][1])

(&num[1][0]) 1008 12 (num[1][0])

(&num[1][1]) 1012 44 (num[1][1])

(&num[2][0]) 1016 56 (num[2][0])

(&num[2][1]) 1020 77 (num[2][1])

Prepared by Dr. Naveen Choudhary

50

Dynamic memory allocation in C

*(Num + 0) 

*(Num +1)

*(Num +2) 

Num



num[2][1] == *(num[2] + 1) == * (*(num + 2) + 1)

num + i == pointer to the ith row

*(num + i)  pointer to the 1st element in the ith row

*(num + i) + j  pointer to the jth element in the ith row

((num + i) + j)  value stored in num[i][j]

*(Num+0)

*(Num +1)

*(Num +2)

Num 

 Num is the address of first element . now

first element here is a pointer to array of int

int num[3][3]  int(*num)[3] == int ptr[][3]

Prepared by Dr. Naveen Choudhary

51

Dynamic memory allocation in C

main() {

int num[3][2];

call_func(num);

}

call_func(int ptr [][3]) or call_func(int (*ptr)[3])

{

.

.

.

}

NULL  defined in stdio.h and stddef.h

basically means that NULL assigned pointer can not point to any

object by mistake

 NULL pointer is a predefined position in memory. If this memory

location contents are tried to be changed or some pointer try to access

this area then NULL pointer assignment error is generated.
Prepared by Dr. Naveen Choudhary

52

Dynamic memory allocation in C

Malloc

 To allocate memory dynamically

#include <stdlib.h> / #include <alloc.h>

void *malloc(unsigned int no_of_bytes)

char *p;

p = (char *)malloc(1000); // allocate space for 1000 bytes

// & returns the pointer the first element of the block

int *p;

p = (int *)malloc(50 * sizeof(int)); // 50*2 if size of int = 2 bytes

void free(void *p) // p is a pointer to a memory that was

//previously allocated using malloc()

main() {

char *s;

char *fun();

s = fun(); }

char *fun() {

char buffer[30];

strcpy(buffer, “hello”);

return(buffer); }

 The scope & life time of buffer ends as the fun() returns . so

problem

soln.

 static char buffer[30];

 or buffer is a global pointer

 or

char *ptr

ptr = (char *)malloc(30);

strcpy(ptr, “.”);

return(ptr);

Q. How to allocate a 1-D array of int

main() {

int *p,i;

p = (int *)malloc(10*sizeof(int));

for(i=0;i<10;i++) {

p[i] = i; //*(p+i)

printf(“%d”, p[i]);

}

}

P 

(say 1000)

Prepared by Dr. Naveen Choudhary

53

Dynamic memory allocation in C

P 

(1000)

0

/1000

0 /1002 0/1004 0/1006

1/1008 1/1010 1/1012 1/1014

2/1016 2/1018 2/1020 2/1022

Q. how to dynamically allocate a 2-D array of int

main() {

int *p, i, j;

p = (int *) malloc(3*4*sizeof(int))

for(i=0; i < 3; i++) {

for(j =0; j < 4; j++)

{

p[i*4 + j] = i;

printf(“%d”, p[i*4 + j]);

}

pintf(“\n”);

}

}

P 

int *

int *

Int *

Q. how to do proper 2 – D dynamic array allocation so that

we can use arr[i][j]
main() {

int **p, i, j;

p = (int **) malloc(3*sizeof(int *)); // 3 = no. of rows

for(i = 0; i < 3; i++)

p[i] = (int *)malloc(4 * sizeof(int));// 4 = no. of columns

for(i = 0; i < 3 ; i++)

{

for(j=0; j < 4; j++)

{

p[i][j] = i;// *(*(p+i) + j)

printf(“%d”, p[i][j]);

}

printf(“\n”);

}

}

//to free memory free each p[i] first free(p[i])

// then free(p);

Prepared by Dr. Naveen Choudhary

55

C++'s Dynamic memory allocation operators

new & delete

malloc () & free () of C for dynamic

allocation of memory are also available in

C++ for compatibility with C but is not

recommended to be used in C++

programs.

new :- The new operator allocates memory &

returns a pointer to the start of it.

delete :- The delete operator frees memory

previously allocated using new.

p_var = new type;

delete p_var;

new - If no memory is available for allocation

(from the heap) a bad-alloc exception is raised,

which your program should catch & handle

otherwise the program will be terminated

abnormally.

Older compilers (some still do) return Null on

failing to allocated memory.

#include <iostream>

#include <new>

using namespace std;

int main() {

int *p;

try {

p = new int; // allocate space for an int

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

}

*p = 100;

cout << "At " << p << " ";

cout << "is the value " << *p << "\n";

delete p;

return 0;

}

Prepared by Dr. Naveen Choudhary

56

C++'s Dynamic memory allocation operators

Advantages of new & delete over malloc &

free

 new automatically allocates enough

memory to hold an object of the

specified type & so no need of sizeof

operator

 new automatically returns a pointer to

the specified type & we don't need to do

explict type cast as in malloc ()

 Both new & delete can be overloaded,

allowing you to create customized

allocation system

Initializing allocated memory

p_var = new var_type (initializer)

int *p;

p = new int (87); // initialize to 87

Allocating array

p_var = new array_type[size];

delete[] p_var; // [] inform that array

//is being released

int *p

p = new int[10]; // allocate 10 integer

// array

delete[] p; // release the array

Note: when arrays are allocated

using news, we can not give them

any initial value

Prepared by Dr. Naveen Choudhary

57

C++'s Dynamic memory allocation operators

Allocating objects:

We can allocate objects dynamically by using new.

when we do this, an object is created & a pointer is

returned to it. when object is created dynamically

using new, its constructor function (if it has one)

is called. when the object is freed, its destructor

function is executed.

class c1{

fun(int,int)

}

int main() {

c1 *p;

p= new c1; // parameter less constructor if any will

//be called

p-> fun (23,78);

delete p; // destructor if any is called

}

class c1{

public:

c1(double n, char *s) {

}

~c1() {

}

int main()

c1 *p;

p= new c1 (123.7,"good work");

delete p;

}

Prepared by Dr. Naveen Choudhary

58

C++'s Dynamic memory allocation operators
Array of objects

Allocation using new, we can allocate array of object

but no array allocated by new can have an initializer.

so we should make sure that if the class contains

constructor function, one will be parameter less (if

you don't c++ compiler will not find a matching

constructor when you attempt to allocate the array

& will not compile your program)

#include <iostream>

#include <new>

#include <cstring>

using namespace std;

class balance {

double cur_bal;

char name[80];

public:

balance(double n, char *s) {

cur_bal = n;

strcpy(name, s);

}

balance() { } // parameterless constructor

~balance() {

cout << "Destructing ";

cout << name << "\n";

}

void set(double n, char *s) {

cur_bal = n;

strcpy(name, s);

}

void get_bal(double &n, char *s) {

n = cur_bal;

strcpy(s, name);

}

};

int main() {

balance *p;

char s[80];

double n;

int i;

try {

p = new balance [3]; // allocate entire array

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

}

// note use of dot, not arrow operators

p[0].set(12387.87, "Ralph Wilson");

p[1].set(144.00, "A. C. Conners");

p[2].set(-11.23, "I. M. Overdrawn");

for(i=0; i<3; i++) {

p[i].get_bal(n, s);

cout << s << "'s balance is: " << n;

cout << "\n";

}

delete [] p;

return 0;

}

Prepared by Dr. Naveen Choudhary

59

C++'s Dynamic memory allocation operators

// Demonstrate nothrow version of new.

#include <iostream>

#include <new>

using namespace std;

int main() {

int *p, i;

p = new(nothrow) int[32]; // use nothrow option

if(!p) {

cout << "Allocation failure.\n";

return 1;

}

Few end notes to remember

1D dynamic array in C++

int* ary = new int[Size]

2D dynamic array in C++

int** ary = new int*[rowCount];

for(int i = 0; i < rowCount; ++i)

ary[i] = new int[colCount];

Prepared by Dr. Naveen Choudhary

60

Function overloading

int myfunc (int i);

double myfunc (double i);

functions are overloaded beside they have

different type of arguments.

int myfunc (int i)

int myfunc (int i, int j)

overloaded as they differ in number of

parameters

int myfunc (int i)

float myfunc (int i)

 Error : differing returns types are insufficient

when overloading

void f (int *p);

void f (int p[]);

int *p & int p[] basically same so can not be

overloaded

Oveloading Constructor function

Constructor functions can also be overloaded

Dynamically allocated Array (of objects) can not be

initialized so a parameter less constructor is a

must in such cases

but if you need initialized version of objects also

then you should have (with parameters)

constructor also

Note : example on next slide

Prepared by Dr. Naveen Choudhary

61

Constructor Overloading

#include <iostream>

#include <new>

using namespace std;

class powers {

int x;

public:

// overload constructor two ways

powers() { x = 0; } // no initializer

// parameter less constructor

powers(int n) { x = n; } // initializer

//with parameter const.

int getx() { return x; }

void setx(int i) { x = i; }

};

int main()

{

powers ofTwo[] = {1, 2, 4, 8, 16};// initialized

/* statically allocated arrays */

powers ofThree[5]; // uninitialized

powers *p;

int i;

// show powers of two

cout << "Powers of two: ";

for(i=0; i<5; i++) {

cout << ofTwo[i].getx() << " ";

}

cout << "\n\n";

// set powers of three

ofThree[0].setx(1);

ofThree[1].setx(3);

ofThree[2].setx(9);

ofThree[3].setx(27);

ofThree[4].setx(81);

// show powers of three

cout << "Powers of three: ";

for(i=0; i<5; i++) {

cout << ofThree[i].getx() << " ";

}

cout << "\n\n";

// dynamically allocate an array

try {

p = new powers[5]; // no initialization

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

}

// initialize dynamic array with powers of two

for(i=0; i<5; i++) {

p[i].setx(ofTwo[i].getx());

}

// show powers of two

cout << "Powers of two: ";

for(i=0; i<5; i++) {

cout << p[i].getx() << " ";

}

cout << "\n\n";

delete [] p;

return 0;

}

Prepared by Dr. Naveen Choudhary

62

Copy constructor
 By default when one object is used to initialize

another, C++ performs a bitwise copy.

 There are situations in which a bitwise copy

should not be used. One of the most common is

when an object allocates memory when it is

created

 Solution of the above problem -> Copy

constructor { when copy constructor exists,

the default copy is bypassed.

class name(const class name & o){

// body of the constructor

}

 It is important to understand that C++ defined

two distinct type of situation in which the value

of one object is given to another. 

Assignment & initialization

Copy constructor applies only to initialization

initialization occour in three different ways

When one object explicity initializes another,

such as in a declaration

 myclass x = y; // y explicitly initializes x

When a copy of an objectis made to be

passed to a function

func(y) // y passed as a parameter.

When a temparary object is genareted (most

commonly as a return value)???

y = func(); // y receives a temporary (returned)

//object(copy constructor is called

//here). However at the time of

//assignment of the returned

//value(object) to y, the overloaded

//assignment operator if any will be

//called

Assignment

class c1{

}

int main (){

c1 ob1, ob2;

ob1=-ob2; //Assignment

Copy Constructor initialization

myclass x = y; // y explicitly initializating x

func(y); // y passed as a parameter

y = func(); // temporary object generated as return

//value
Prepared by Dr. Naveen Choudhary

63

Copy constructor

/* This program creates a "safe" array class. Since space

for the array is allocated using new, a copy constructor

is provided to allocate memory when one array object is

used to initialize another. */

#include <iostream>

#include <new>

#include <cstdlib>

using namespace std;

class array {

int *p;

int size;

public:

array(int sz) {

try {

p = new int[sz];

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

exit(EXIT_FAILURE);

}

size = sz;

}

~array() { delete [] p; }

// copy constructor

array(const array &a);

void put(int i, int j) {

if(i>=0 && i<size) p[i] = j;

}

int get(int i) {

return p[i];

}

};

// Copy Constructor

array::array(const array &a) {

int i;

try {

p = new int[a.size];

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

exit(EXIT_FAILURE);

}

for(i=0; i<a.size; i++) p[i] = a.p[i];

}

int main()

{

array num(10);

int i;

for(i=0; i<10; i++) num.put(i, i);

for(i=9; i>=0; i--) cout << num.get(i);

cout << "\n";

// create another array and initialize with num

array x(num); // invokes copy constructor

for(i=0; i<10; i++) cout << x.get(i);

return 0;

}

Prepared by Dr. Naveen Choudhary

64

Copy constructor in Brief

1. array a = num; // copy constructor will be called

2. func1 (array a){ }

main{

func1(Num); // Copy constructor will be called while passing the arguments

}

3. funct1{

array Num;

return Num;

}

main() {

array a;

a= funct1();

}

array a (10)

array b(10);

b=a; // does not call copy constructor, rather it is an assignment so bitwise copy will take place & in several

condition to avoid bitwise copy we need to overload the = operator

Prepared by Dr. Naveen Choudhary

65

Finding the address of an overloaded

function
#include <iostream>

using namespace std;

int myfunc(int a);

int myfunc(int a, int b);

int main() {

int (*fp)(int a); // pointer to int f(int)

fp = myfunc; // points to myfunc(int)

cout << fp(5);

return 0;

}

int myfunc(int a) {

return a;

}

int myfunc(int a, int b) {

return a*b;

}

Prepared by Dr. Naveen Choudhary

66

Default function arguments

void myfunc (double d = 0.0)

{

}

myfunc(198.234); // pass an explict value

myfunc(); // lets function use default

Reason & use - If a function uses lot of

arguments but don't require all the

arguments in all the calls then default

arguments are quite a facility to use in

such cases.

When you are creating functions that have

default arguments, it is important to

remember that the default values must be

specified only once, and this must be the

first time the function is declared within

the file.

We can specify different default arguments

for each version of an overloaded function

All parameters that take default values must

appear to the right of those that don't

void iputs (int indent = -1, char *str);//error

int myfunc(float f, char *str, int i=0, int j); //Error

Default parameters can also be used in

constructors of an object

class cube {

int x,y,z;

public:

cube (inti=0, int j=0, int k=0){

}

};

main() {

cube a(3,3,4);

cube b; // call constructor with default arguments

Prepared by Dr. Naveen Choudhary

68

Default arguments v/s Overloading
Ambiguity due to C++ automatic type

conversion
C++ Automatically attempts to convert the

arguments used to call a function into the type of

arguments expected by the function call

int myfunc (double d){

}

cout<<myfunc('C'); // not an error, conversion applied

//(character will be converted to double

#include <iostream>

using namespace std;

float myfunc(float i);

double myfunc(double i);

int main() {

cout << myfunc(10.1) << " ";// unambiguous,calls to

//myfunc(double) as

//constant fraction no. by

//default are double

cout << myfunc(10); // ambiguous

return 0;

}

float myfunc(float i)

{

return i;

}

double myfunc(double i)

{

return -i;

}

#include <iostream>

using namespace std;

char myfunc(unsigned char ch);

char myfunc(char ch);

int main() {

cout << myfunc('c'); // this calls myfunc(char)

cout << myfunc(88) << " "; // ambiguous

return 0;

}

char myfunc(unsigned char ch) {

return ch-1;

}

char myfunc(char ch) {

return ch+1;

}

Prepared by Dr. Naveen Choudhary

69

Ambiguity due to default arguments in an

overloaded function

#include <iostream>

using namespace std;

int myfunc(int i);

int myfunc(int i, int j=1);

int main()

{

cout << myfunc(4, 5) << " "; // unambiguous

cout << myfunc(10); // ambiguous

return 0;

}

int myfunc(int i) {

return i;

}

int myfunc(int i, int j) {

return i*j;

}

Some types of overloaded functions are simply inherently

ambiauous

// This program contains an error.

#include <iostream>

using namespace std;

void f(int x);

void f(int &x); // error

int main() {

int a=10;

f(a); // error, which f()?

return 0;

}

void f(int x) {

cout << "In f(int)\n";

}

void f(int &x){

cout << "In f(int &)\n";

}

Prepared by Dr. Naveen Choudhary

