

Logic Gates

- **■** Standard Logic Gates
- 1. AND
- 2. OR
- 3. NOT
- **■** Exclusive Logic Gates
- 1. XOR
- 2. XNOR
- Universal Logic Gates
- 1. NAND
- 2. NOR

rested by : Paisk Jun

31/08/20

Standard Logic Gates

1. AND Gate:

- It is a basic type of digital circuit. It has two or more inputs and one output.
- The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are high i.e. 1.
- A dot (.) is used to show the AND operation i.e. A.B
- Sometimes this dot is omitted and it is written as AB
- The AND operation for the output is defined as "Y equals to A AND B"

Y = A.B

Created by : Palak Jain 3 /08/20

2. OR Gate:

- It is also basic type of digital circuit. It has two or more inputs and one output.
- The OR gate is an electronic circuit that gives a High output (1) if either of one input is high (1).
- A plus (+) is used to show the OR operation i.e. A + B
- The OR operation for the output is defined as "Y equals to A OR B"

Y = A + B

Created by : Palak Jain

31/06/20

7

3. NOT Gate:

- The NOT gate is an electronic circuit that produces an inverted version of the input at its output.
- The NOT logic operation returns true if its input is false, and false if its input is true.
- It is also known as an inverter.
- If the input variable is A, the inverted output is known as NOT A. This is also shown as A', or A with a bar over the top.

Y = A'

Created by : Palak Jain

31/08/20

Exclusive Logic Gates

1. XOR Gate:

- The XOR logic operation (which stands for "Exclusive OR" returns true if either of its inputs differ, and false if they are all the same.
- In other words, if its inputs are a combination of true and false, the output of XOR is true. If its inputs are all true or all false, the output of XOR is false (0).
- In Boolean algebra, the XOR value of two inputs A and B can be written as A⊕B (the XOR symbol, ⊕, resembles a plus sign inside a circle).

$$Y = A \oplus B$$

 OR
 $Y = \overline{A}B + A\overline{B}$

Crussell by : Pales Into

09/69/98

2. XNOR Gate:

- The XNOR logic operation (which stands for "Exclusive NOT OR" returns true (1) if both the inputs are same, and false (0) if inputs are different.
- In other words, if its inputs are a combination of true(1) and false(0), then the output of XNOR is false(0). If its inputs are all true or all false, the output of XNOR is true(1).
- In Boolean algebra, the XNOR value of two inputs A and B can be written as A ⊕ B

$$Y = \overline{A \oplus B}$$
 OR
 $Y = AB + \overline{AB}$

Created by : Polak Jalu

02/09/20

Truth Table and Diagram of XNOR Gate:

inputs		output
A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Universal Logic Gates

1. NAND Gate:

- This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate.
- The outputs of all NAND gates are high(1) if any of the inputs are low(0).
- The symbol is an AND gate with a small circle on the output. The small circle represents inversion.
- In Boolean algebra, the NAND value of two inputs A and B can be written as AB (AB with an overscore)
- NAND Gate is also called "Universal Logic gate" because any other logic operation can be created by using only NAND gates.

 $Y - \overline{AB}$

Created by : Palak Julia 02/09/20

Truth Table and Diagram of NAND Gate:

Inputs		output
A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

2. NOR Gate:

- This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate.
- The outputs of all NOR gates are low(0) if any of the inputs are high(1).
- The symbol is an OR gate with a small circle on the output. The small circle represents inversion.
- In Boolean algebra, the NOR value of two inputs A and B can be written as A + B (A+B with an overscore).
- NOR Gate is also called "Universal Logic gate" because any other logic operation can be created by using only NOR gates.

62/09/20

Truth Table and Diagram of NOR Gate:

inputs		output
Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

Boolean Algebraic Properties

S.No.	Theorems/ Identities	Name (if any)
1	$x + \overline{x} = 1$	Additive Identities
2	$x \cdot \overline{x} = 0$	Multiplicative Identities
3	x + 0 - x	Additive Identities
4	$x \cdot 0 = x$	Multiplicative Identities
5	x + y = y + x	Commutative Property
6	x . y - y . x	Commutative Property
7	x + (y + z) = (x + y) + z	Associative Property
8	x(yz) = (xy)z	Associative Property
9	x(y+z) - xy + xz	Distributive Property

Realizing Boolean Expressions from Circuits Example: 1 AB Created by : Palak Jula Crossed by : Palak Jula

4. Now that we have a Boolean expression to work with, we need to apply the rules of Boolean algebra to reduce the expression to its simplest form

Created by a Palak Jain

07/09/20

Created by : Palak Jain

07/09/20

Created by : Palak Jain

Created by : Polak Join

Postulates of Boolean Algebra

- Postulate 1:
 - a) A = 0, if and only if, A is not equal to 1
 - b) A = 1, if and only if, A is not equal to 0
- Postulate 2:
 - a) x + 0 = x
 - b) $x \cdot 1 = x$
- Postulate 3: Commutative Law

$$a) x + y = y + x$$

b)
$$x \cdot y = y \cdot x$$

Created by : Patak Jai

G7/07/20

■ Postulate 4: Associative Law

a)
$$x + (y + z) = (x + y) + z$$

b)
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

■ Postulate 5: Distributive Law

a)
$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

b)
$$x + (y \cdot z) = (x + y)^{k} (x + z)$$

■ Postulate 6:

a)
$$x + \overline{x} = 1$$

b)
$$x \cdot \overline{x} = 0$$

Theorems of Boolean Algebra

The following two theorems are used in Boolean algebra.

- DeMorgan's theorem
- Duality theorem

DeMorgan's Theorem

- De Morgan has suggested two theorems which are extremely useful in Boolean Algebra.
- DeMorgan's Theorems are two additional simplification techniques that can be used to simplify Boolean expressions.

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Created by a Palak Jahr

08/07/20

Theorem 1

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

NAND = Bubbled OR

The left hand side (LHS) of this theorem represents a NAND gate with inputs A and B, whereas the right hand side (RHS) of the theorem represents an OR gate with inverted inputs. This OR gate is called as **Bubbled OR**

Bubbled OR

Table showing verification of the De Morgan's first theorem -

Α	В	ĀB	Ā	B	A+B
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

Created by a Palak Jain

na nemn

Theorem 2

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

NOR = Bubbled AND

The LHS of this theorem represents a NOR gate with inputs A and B, whereas the RHS represents an AND gate with inverted inputs. This AND gate is called as **Bubbled AND**

NOR = Bubbled AND

Created by : Palak Julu

08/09/

$$\Rightarrow A = \overline{A \cdot B}$$

Bubbled AND

Table showing verification of the De Morgan's second theorem -

Α	№ B	A+B	Ā	B	A.B
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0

Created by a Palak Jain

08/07/20

Duality Theorem

- This theorem states that the dual of the Boolean function is obtained by interchanging the logical AND operator with logical OR operator and zeros with ones.
- For every Boolean function, there will be a corresponding Dual function.

T	heorems/ Identities
	$\mathbf{x} + \mathbf{x} = \mathbf{x}$
	x + 1 = 1
	x + y = y + x
	$x + \overline{x} = 1$
	x + 0 - x
х.	$y + z = x \cdot y + x \cdot z$

Dual Theorems/ Identities
$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$
$\mathbf{x} \cdot 0 = 0$
$x \cdot y = y \cdot x$
$\mathbf{x} \cdot \overline{\mathbf{x}} = 0$
$x \cdot 1 = x$
$x + y \cdot z = x + y \cdot x + z$

Createst by : Polak Jain

CB/09/5

Boolean & DeMorgan's Theorem

```
1) X · 0 = 0
                                      10A) X \cdot Y = Y \cdot X
                                      10B) X + Y = Y + X
2) X · 1 = X
3) X \cdot X = X
                                    11A) X(YZ) = (XY)Z
                                                                                     Associative
                                    11B) X + (Y + Z) = (X + Y) + Z
4) X \cdot \overline{X} = 0
                                     12A) X(Y+Z)=XY+XZ
5) X + 0 = X
                                                                                                       Distributive
                                     12B) (X+Y)(W+Z) = XW + XZ + YW + YZ
                                     13A) X + \overline{XY} = X + Y
8) X + \overline{X} = 1
                                     13B) \overline{X} + XY = \overline{X} + Y
                                                                          Consensus
9) X = X
                                    13C) X + \overline{XY} = X + \overline{Y}
                                                                           Theorem
                                      13D) \overline{X} + X\overline{Y} = \overline{X} + \overline{Y}
                                      14A) \overline{XY} = \overline{X} + \overline{Y}
                                      14B) \overline{X+Y} = \overline{X} \overline{Y}
```

Important Theorems of Boolean Algebra

S.No.	Theorems/ Identities	Dual Theorems/ Identities	Name (if any)
1	$\mathbf{x} + \mathbf{x} = \mathbf{x}$	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$	Idempotent Law
2	x + 1 = 1	x - 1 = x	
3	$\mathbf{x} + \mathbf{x} \cdot \mathbf{y} = \mathbf{x}$	$\mathbf{x} \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{x}$	Absorption Law
4	$\overline{\overline{\mathbf{x}}} = \mathbf{x}$		Involution Law
5	$x \cdot (\overline{x} + y) = x \cdot y$	$x + (\overline{x} \cdot y) = x + y$	
6	$\overline{x+y} = \overline{x} \cdot \overline{y}$	$\overline{x} \cdot \overline{y} = \overline{x} + \overline{y}$	De Morgan's Law

cated by : Palak Jain (8/09/20)

Deriving XOR Function

The practical problem with the circuit above is that it contains three different kinds of gates: AND, OR, and NOT.

Created by a Pacali Jaila 58,00/2

Deriving XOR Function

This problem can also be solved by using single quad two-input NOR gate.

Created by a Pacali Jula

59,09/3

Reducing Boolean Expression by Algebraic Reduction

Q-1

$$A\overline{B}D + A\overline{B}\overline{D} = A\overline{B}(D + \overline{D})$$

$$A\overline{B}(1)$$

$$A\overline{B}$$

Created by : Patel Jain

01/09/52

Assignment

Simplify: $C + \overline{BC}$

Simplify: $\overline{A}(A + B) + (B + AA)(A + \overline{B})$

Simplify: $\overline{AB}(\overline{A} + B)(\overline{B} + B)$

Simplify: $AB + \underline{A}(\underline{B} - \underline{C}) + \underline{B}(\underline{B} + \underline{C})$

٨